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COMPRESSIVE STRENGTH OF MATERIALS

M. M. Muzdakbaev and V. §. Nikiforovskii UDC 539.4

A state of compression in material, rocks, machine parts, and structural elements is evidently very
common. As a measure of this state, the concept of uniaxial compressive strength was introduced and con~
sidered as a fundamental characteristic of the material. One might also suppose that a material is fractured
when the maximum tangential stress reaches the breaking point, which turns out to be half as large as the
compressive strength. It should be noted that the compressive strength depends rather strongly on many fac-
tors, including the shape of the sample, its dimensions and volume, and end conditions [1, 2]. Experimenters
long ago concluded that the uniaxial compressive strength is not a characteristic of the material [3, 4]. Actu-
ally, the description of the fracture patterns of samples recorded so far [2, 3, 5] with the formation of oblique
fracture surfaces or surfaces of discontinuity by a coaxial compressive load can more probably be related to
the shear or tensile stresses than to the compressive load. In addition, experimental and theoretical studies
have shown that in tests which at first glance seem simple, the pattern of the stressed state is complex, not
one-dimensional, and varies with the experimental conditions [6-9].

A number of results were obtained in [9] from a study of the stressed state of a sample under plain strain
by investigating the effects of dimensions, the correlation of properties, and the role of the inserts.

In the present paper we present a numerical study of the state of stress of tubular samples and consider
certain characteristic features which are interesting and important from the point of view of understanding the
significance of compressive strength. The calculation was performed by the method of finite elements, using
triangular-shaped elements [10]. In a cross section of a tubular sample along a meridional plane shown in
Fig. 1, D and d are the outside and inside diameters, L is the length of the sample, and L; is the length of the
inserts. The division into elements is shown in the upper symmetric half ABFE. The stressed state is char-
acterized by the four components of the stress tensor ¢4, oy, 0y, and 7ry. Since the pattern is symmetric
with respect to a quarter of the cylinder (00’ is the axis of symmetry and AB is the plane of symmetry), we
set up and solve the problem for the region ABFE. We formulate the following boundary conditions:

v=0, 1,,= 0; z=L/2, di2 < r<D/2;
u=0,v=const; z2=0L, d2<r << D/2; (1)
t,,=0, 0,=0; r=4d/2, D2, L2 <2< L.
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Fig. 1

The first of boundary conditions (1) denote the conditions in the plane of symmetry z = L/ 2 over the
whole thickness of the sample. At the upper end z = L the displacement v = const, u = 0 is in the vertical di-
rection only; here u and v are, respectively, the horizontal and vertical components of the displacement of
points. The lateral faces are stress-free. It should be noted that specifying no horizontal displacements of
points on the upper boundary between the sample and the pressure plate is a limiting case., Actually, there is
some slippage. Nevertheless, this intentionally crude formulation of the problem enables us to see and under-
stand the effect of the nonuniformity of the pattern more quickly.

Figure 2 shows the stress field in samples with the diameter of the base D equal to the length L, D/d =
3.7, and Young's modulus E =5 - 10% kg /cm? and Poisson's ratic v = 0.15 for the material (marble). The curves
are isobars — lines of equal stress. The solid curves indicate compressive, the dashed tensile, and the dashed-
dot curves zero values of the stress components aﬂzg 0%, UOG’ 7%z, and Tﬁnax as percentages of the average ver-
tical stress U(i]j = ¢1j100/0,; the region of normal tensile stresses is shaded. The nonuniformity of the stressed
state appears in all components. Thus, the vertical stress ¢, is somewhat larger on the outside diameter and
smaller on the inside than the average stress near the end; in the central part the pattern is opposite, with the
stress being larger on the inside and smaller on the outside. The radial oy and azimuthal ¢4 normal compo-
nents and the tangential 7., component of the stress tensor are nonzers. Two features are noted: a) The con-
centrations of all these stresses occur near the end in the vicinity of the bounding surface; b) there is a change
in sign of the normal stresses in the central part of the sample and an appreciable gradient of the tangential
component near the end at the outside diameter.

These two facts must be noted in analyzing the possible fracture mechanism. Study of the isobars shows
that fracture in vertical planes coaxial with the compression is really not paradoxical as noted in [11]; there
is a real reason — elongation in the radial and azimuthal cross sections. On the diagram of the isobars of the
maximum tangential stress

{ P ——
| Tmax| = <5 V(O’r — ;)2 - 415

there is a region of concentration and large gradients near the end at the outside diameter. The pattern is
nonuniform for all components over the whole volume of the sample.

The effect of the ends on one another decreases as the vertical dimension is increased; the end zones
break up and cease affecting one another. Localization of the zones ends for L = 2D, and simultaneously with
this it is important to note the following features (Fig. 3, L =2D, D/d=3.7, E = 5-10% kg/cm?, v = 0.15).

The end zone occupies only the upper part of the pattern; in the middle part the vertical component is close

to the average value, the radial and azimuthal normal components and the tangential component are close to
zero, with the radial and azimuthal stresses being weakly positive (tensile) in a broad central zone; the maxi~
mum tangential stress in the uniform zone is close to haif the average value of the vertical stress, as it should
be. There is a certain increase in the nonuniformity of the pattern in the end zone; the oy, 0g, Tpz, and par-
ticularly the ryax stress concentrations are increased, if only slightly.

It is known from experiments that the limiting value in uniaxial compression is decreased and stabilized
as the vertical dimension is increased. Many relate this stabilization for L 2 2D to the appearance of a zone

2583



of uniform stress. As noted above, as L is increased from D to 2D, end zones appear, break up, and cease

to affect one another; a uniform zone is organized, and at first glance the desired result is obtained by a change
in geometry. However, a simultaneous insignificant increase in the concentration of 14,5, the formation of
extensive zones of normal tensile stresses, and the experimental result of the fracture of samples from the
plane of the pressure plates from the outside region, i.e., from the region of nonuniform stress or along ver-
tical planes, also are the cause of a weak nonuniformity in the central part. From these comparisons we can
conclude that the tendency toward uniformity of the pattern has not been confirmed: the decrease in the break-
ing strength can be related to the increase in the concentration of Ty,4x and the change in the nature of the
fracture with the appearance of elongation in vertical cross sections as a new cause. A decrease in D/d leads
to the same result as an increase in the length of the sample.

One way of decreasing the end effect and obtaining a uniform stress field is to reduce friction on the
ends by using a lubricant appropriate to the shape and properties of the inserts. In using tubular steel inserts
having the shape of the sample, the uniformity of the stressed state of the sample is actually increased, as
shown in Fig. 4, whereL/D =2, L;/D=1, D/d=3.7, E,; = 5-10° kg/cm?, E, =2.1-10% kg/cm?, v, = 0.15,
and v, = 0.27. The inserts are shown as regions II of Fig. 1b; AB is the plane of symmetry and 00' is the axis
of symmetry. The finite elements are decreased in size on the surface of separation CD between the sample
and the insert just as in the end zone. The tendency, noted above, for the stress field {o change with an in-
crease in length of the sample is observed. In this situation the stressed state in the sample is practically
uniform; the vertical component is close to the average value; the radial and azimuthal normal components and
the tangential component of the stress field are close to zero except in a narrow zone close to the contact with
the insert. In this zone Tmax is nonuniform, and in the insert itself the situation is as described above with a
formed end zone in which the stress concentration is somewhat higher than in the adjacent zone. This must be
related to the larger Poisson's ratio (0.27 instead of 0.15) rather than to the tendency to increase with an in-
crease in the length of the sample. Different cases are possible on the sample—insert boundary, since for the
same deformation of different materials differences in the radial ¢y and azimuthal g4 strains appear because
of different values of Young's modulus and Poisson's ratio.

A very interesting situation is observed when the inserts are soft and easily deformed. In this case the
sample generally does not fracture along slip planes, but along vertical planes parallel to the direction in
which the load acts. The action of such an insert is opposite that for a rigid fastening. Since the insert is de-
formed more strongly in the transverse direction it will drag the sample along with it by friction and give rise
to elongation. The insert itself will be appreciably compressed. Figure 5 shows patterns of isobars for L =D,
L, = 0,05L, D/d = 3.7, E;=5-10°kg/em?, E, = 5-10° kg/cm?, vy =0.15, and vy = 0.45 (cf. Fig. 1, where
region I is lead). The qualitative changes of all the components of the stress tensor are particularly note-
worthy. Thus, the zones in Fig. 2 where the stresses are below and above the average value of the vertical
component have exchanged places. The signs of the radial and azimuthal normal components and the tangential
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component are also changed. The concentration of maximum tangential stress has increased. While the con-
centration of Tyax increased only slightly, the zone where oy and oy are tensile stresses now occupies practi-
cally the whole sample; the amplitudes, although relatively small, have increased several times. The transi-
tion from one form of fracture to another is therefore quite natural.
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Our calculations and considerations show that a simple experiment on uniaxial compression turns out to
be rather complicated from the point of view of analysis. The stressed state of a sample is essentially non-
uniform, and the fracture conditions are satisfied first in the nonuniform region of the pattern near the pres-
sure plates of the testing machine. As a result the uniaxial compressive strength is a convenient technical
strength characteristic of a structural sample rather than a characteristic of the material.
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CONVECTIVE EFFECTS IN LIQUID INCLUSIONS DRIFTING
IN NONUNIFORMLY HEATED SOLIDS

Yu. K. Bratukhin UDC 548.5:536.2

§1. We will consider a liquid-filled spherical cavity in an infinite solid mass. The liquid dissolves the
surrounding material and under equilibrium conditions is a saturated solution of concentration Cy. At infinity
let there be a constant horizontal temperature gradient VTe = A. Under these conditions in the gravitational
field g free convective motion develops in the liquid.

We assume that the motion is slow and steady; solid phase can crystallize out of the supersaturated solu-
tion only at the interface between the inclusion and the matrix; the dissolving of the solid in the liquid does not
lead to a change in the volume of the latter; the thermal diffusion and diffusion heat-conduction effects are
negligible [1]. All the parameters (kinematic and dynamic viscosity coefficients v and 71, thermal conductivity
%, thermal diffusivity x, and diffusion coefficient D) of the liquid and the solid are constant. The solubility C;
and the liquid density p depend linearly on temperature T. We assume that the density also depends on the con-
centration C, defined as the ratio of the mass of solid material per unit volume of solution to the mass of that
volume:

p(T, C) = .O(Tm CO) “ - a(C - CO) - S(T - TO)L
Co(T) == Co(To) = (dCo/dTHT — Th).

The nonuniform heating of the walls of the eavity leads to the dissolving of the hotter parts of the solid
and subsequent diffusive and convective mass transfer to the cooler regions, where the solution is supersaturated
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